Equivariant nonstationary source separation
نویسندگان
چکیده
Most of source separation methods focus on stationary sources, so higher-order statistics is necessary for successful separation, unless sources are temporally correlated. For nonstationary sources, however, it was shown [Neural Networks 8 (1995) 411] that source separation could be achieved by second-order decorrelation. In this paper, we consider the cost function proposed by Matsuoka et al. [Neural Networks 8 (1995) 411] and derive natural gradient learning algorithms for both fully connected recurrent network and feedforward network. Since our algorithms employ the natural gradient method, they possess the equivariant property and find a steepest descent direction unlike the algorithm [Neural Networks 8 (1995) 411]. We also show that our algorithms are always locally stable, regardless of probability distributions of nonstationary sources.
منابع مشابه
Differential Decorrelation for Nonstationary Source Separation
In this paper we consider the problem of source separation for the case that sources are (second-order) nonstationary, especially their variances are slowly time varying. The differential correlation is exploited in order to capture the time-varying statistics of signals. We show that nonstationary source separation can be achieved by differential decorrelation. Algebraic methods are presented ...
متن کاملA new method for blind source separation of nonstationary signals
Many algorithms for blind source separation have been introduced in the past few years, most of which assume statistically stationary sources. In many applications, such as separation of speech or fading communications signals, the sources are nonstationary. We present a new adaptive algorithm for blind source separation of nonstationary signals which relies only on the nonstationary nature of ...
متن کاملEquivariant algorithms for selective transmission
In this paper, we consider the problem of selective transmissionthe dual of the blind source separation taskkin which a set of independent source signals are adaptively premixed prior to a non-dispersive physical mixing process so that each source can be independently monitored in the far eld. We derive a stochastic gradient algorithm for iteratively estimating the premixing matrix in the selec...
متن کاملEquivariant Adaptive Source Separation - Signal Processing, IEEE Transactions on
Source separation consists of recovering a set of independent signals when only mixtures with unknown coefficients are observed. This paper introduces a class of adaptive algorithms for source separation that implements an adaptive version of equivariant estimation and is henceforth called equivariant adaptive separation via independence (EASI). The EASI algorithms are based on the idea of seri...
متن کاملA Blind Separation Algorithm for Convolutive Mixture of Nonstationary Sources
A blind separation algorithm utilizing nonstationarity of sources is proposed. It is suitable particularly for separation of such strongly nonstationary signals as voices. The original version of the algorithm was proposed by one of the authors. The present version has made two improvements. First, it is extended to be able to deal with not only instantaneous mixture but also convolutive mixtur...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neural networks : the official journal of the International Neural Network Society
دوره 15 1 شماره
صفحات -
تاریخ انتشار 2002